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Holonomic mechanical systems with a non-retaining constraint and absolutely elastic collisions with 

the constraints subject to normal “white noise” perturbation forces are considered. The motion is 

defined and the problem of analysing such systems is formulated. It is shown that the Fokker-Planck- 

Kolmogorov equation for the one-dimensional probability distribution density of the state vector of 

systems free from a non-retaining constraint also governs the one-dimensional distribution density for 

the systems under consideration. Steady regimes in the restricted sense are studied and an approximate 

method of analysing such systems is proposed. Examples are considered. 

When analysing stochastic vibratory impact systems most attention has been devoted to 
mechanical systems with one degree of freedom [l], which have been studied by the averaging 
method combined with the method of non-smooth transformations. The motion of some 
vibratory impact systems subject to random perturbations other than a white noise was studied 
in [Z] using limit theorems. 

1. Consider a holonomic mechanical system with an (n + 1)-dimensional configuration space 
U (q = [qO, q:lT denote the local coordinates in U and dimq, = n), kinetic energy T. which is a 
quadratic form of the generalized velocities, potential energy lI = n(q). generalized force 
vector F, and a non-retaining constraint q,, 20. The Hamilton function of the system is equal 
to N = T+lYI, where T =pTR(q, t)p/2. and p is the generalized momentum vector. We shall 
assume that the generalized coordinates in U are chosen in such a way that 

(semi-geodesic coordinates) (3.41. It is assumed that the vector of generalized forces F can be 
represented in the form 

F = -D(q,t)p+ b(q.p.OV(t) 

where V(t) is the vector representing normally distributed white noise with intensity matrix 
v(t),. D and b arc deterministic matrix-valued functions of the appropriate dimensions (D is a 
non-negative matrix). If the system was free from a non-retaining constraint, one could 
describe it by the It6 stochastic differential equations (SDEs) 

tj =aH/ap, i,=-aH/aq-Dp+bV (1.1) 

with appropriate initial conditions. 
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The main purpose of the present paper is to set up and analyse a stochastic mechanical 
system with a non-retaining constraint and absolutely elastic collisions with the constraint. 

We define [3] an auxiliary system with (n+l) degrees of freedom and free from a non- 
retaining constraint. To this end we change the variables in (1 .l) as follows: 

~e(0=l~0)19 slW=QIWv p~W=P,sgn&(~), plW=P,(t) (1.2) 

These formulae define the mapping (Q, P) -+ (q, p), where cl0 2 0. 
The auxiliary system can be described by the following SDEs with the corresponding initial 

conditions 

& =u,,, Q; =al, P-j=a,+bosgn&V, P;=a,+b,V 

a0 =iW IlIP, =o,(l@,I.Q,,t)P,, a, =aH* /aP, =~(lQ&Q,,t)P, 

a2 =-aH*/aa -D,(IQ,I,Q,,t)[P,,P~sgn~l’ 

a3 = -aH'/aQ, -D,(l~l,Q,.t)[P,sgn~.P~l’ 

bi = bi<l&l.Ql,Posgn&P, J) (i=O,l) 

(1.3) 

Here D, and b, are the first rows of D and b, respectively, i.e. D = [Do, DT]’ and b = [b,, b:]‘, 
and the Hamilton function H* of the auxiliary system is defined as 

In general, the drift and diffusion coefficients of the SDEs (1.3) undergo discontinuities of 
the first kind as the hyperplane Q,, = 0 is crossed. In a similar case the problem of constructing 
the solution of the corresponding Fokker-Planck-Kolmogorov (FPK) equation for the one- 
dimensional probability density of the state vector was considered in [5]. 

The solution of the SDE (1.3) with the corresponding initial conditions is a Markov process 
X(t) = [Q(r)‘P(t)‘]‘. We shall determine the motion of a stochastic mechanical system with a 
unilateral constraint and absolutely elastic collisions with the constraint as the stochastic 
process x(t) = [q(t)*~(t)~]~ obtained from X(t) by (1.2). If the finite-dimensional distributions of 
X are known, then one can find all finite-dimensional distributions of the desired vector x 
using (1.2), i.e. solve the problem of analysis. 

We note that the approach connected with determining a diffusion process with boundary 
screens using a certain auxiliary process (auxiliary system) is well known (see, for example, [6. 
p. 2701). However, for the problems of vibratory impact system mechanics a special approach is 
necessary because in this case an impact means an instantaneous jump from one point in phase 
space to another. 

2. We shall study the question of what equation is satisfied by the one-dimensional density 
fi(x, t) of the process x(t) to be determined. To this end we introduce an involution of the 
phase space of the auxiliary (and the original) system with the aid of the formula SX = [-Q,, 
QT, -PO, &*I*@’ = id). From the well-known formulae for the density of a random variable [7] 
one can find that the one-dimensional density fi(x, r) of the stochastic process x(t) with 
reflections is connected with the corresponding density fl(X, t) of the auxiliary process X(r) 
by 

f,(x,r)=f,*(x.r)+fi’(sx,r) (40 3 0) (2.1) 

It follows that 
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af, 1 &I I,, 4 =o, af, ia~~~,,,=o 

The one-dimensional density f,*(X, t) of the auxiliary process satisfies the FPK equation 

(see, for example, [8]) 

ar;* /at+Gf,* =o 

G(e) = $ii(X,,,,_$r[ $-$d(X,(,] 

a =[uO,a~,c+,a;]T, u’= b’vb’T, b’=[bXsgnQ,,,b;]’ 

We will denote by G, the operator obtained from G by replacing X by SX. 

Lemma 1. GS =G 

Proof. We have 

~(sX)=-oo(X). a@X)=aI(X). qUX)=-q(X) 

a3W)=a3(X). bjWO=bi(X) (j-0.1) 

we obtain the required equality. 

Assertion. The one-dimensional density fi(x, t) of the process x(t) to be determined 
the FPK equation 

afi l&+G’f, =O, G’(.)= ~[~~.~]+~[(-~-~)~.~]-~~[~~~~.~I 

fi (x. 4) I= fro(x), u = bvbT 

(2.2) 

satisfies 

for the system without the confining non-retaining constraint with the normalization condition 

~fiC%r)~ = 1. u= ((9.Ph?~ ) 01 

corresponding to a system with reflections. 

Proof. Adding (2.2) to the equation 

af;(sx.r)/ar+G~~~(SX.r)=O 

which can be obtained from (2.2) by substituting SX for X, and using Lemma 1, we get 
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Hence 

aJ (X,t)/ar+Gf, (X,r)=O 

It remains to observe that in the domain q0 2 0 the operator G is identical with G’ when X is replaced by 
x. The assertion is proved. It generalizes the well-known similar result of [l, p. 3521. 

In a similar way one can prove Ita’s formula for the process x(t) with reflections. Namely, let 
k(x) be a twice differentiable function on U. then the stochastic differential of {(x(t)) is 

It has the same form as the stochastic differential of the process for the system with no non- 
retaining constraint. 

Example 1. Consider the vertical motion (along the q-axis) of a material point in a uniform 
gravitational field inside a random medium with absolutely elastic reflections at q = 0 

4’=p, p’=-Ep-k+V (q*O) 

Here E and k are dimensionless constants and V is a stationary normal white noise of intensity v. 

The assertion implies that the one-dimensional distribution density fi(q, p, r) satisfies the following 

FPK equation with the corresponding initial condition and the normalization condition 

a~Jat+a(plr>Jaq-a[(Ep+k)filJap-(vJ2)aZf,Jap*=O 

fi(4.P.to)=fio(4.P). 5 hLPJ)&~P=l 
-0. 0 

(2.3) 

Note that when there is no reflecting screen at q=U the equation for p can be separated and studied 
independently. However, in the corresponding auxiliary system 

e’=p, F=-Ei'-kspQ-sgnQv 

the equation for P can no longer be separated. In the example under consideration the FPK equation 

must therefore be set up for the whole state vector (q, p). 

Example 2. Consider the motion of a simple pendulum between parallel walls (Fig. 1) in a uniform 

gravitational field. It is assumed that the pendulum is subjected to random and dissipative torques. We 
write down the equations of motion in terms of the dimensionless variables 

Fig. 1. 
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Here V(t) is stationary white noise of intensity v and E > 0 is the specific coefficient of friction. Collisions 
with the walls occur at cp = fl. 

We shall show that in this case (with two unilateral constraints) the probability distribution density 

f,(cp, p, t) of the process with reflections satisfies the FPK equation set up as if there were no non- 

retaining constraints. 
We introduce the functions g(0) and c(0) [9] by 

We define the auxiliary system on a cylinder with coordinates Q, E [0,41] (@ is measured module 41) and 
PER without non-retaining constraints by means of the substitution cp= 6(#), p= PC(@). It can be 

described by the following system of SD% 

Ilb’= P. P =-S;(~)sins(~)-eP+b(i(~))S(QII)V(r) (2.4) 

We define an involution (Cp, P} of the phase space by SX = [21-a, -PIT, X = [a, 4’. Then (2.1) holds 

for x = [(p, p]‘, Since the sign of the drift vector in (2.4) changes under this involution whiIe that of the 
diffusion coefficient vb*<* does not, it follows that G, = G, as in Section 1, and f,(cpt p, r) satisfies the FPK 
equation 

The physical meaning of the assertion can be elucidated using the constructive approach to mechanical 

systems with non-retaining constraints involving the introduction of an auxiliary elastic force field of high 

rigidity in place of the non-retaining constraints [lo]. We write down the FPK equations for the motion of 

the system without non-retaining constraints in the presence of the auxiliary field as well as when there is 

no such field. In the domain of motion with reflections (between the “walls”) the drift and diffusion 
coefficients are the same for the two cases. Therefore the solutions of the FPK equations are also equal to 
one another apart from a constant. As the rigidity of the auxiliary field tends to infinity the probabili’.y 
that the trajectory is behind one of the walls tends to zero and for a motion with reflections the desired 
one-dimensional density should be normalized in the domain of admissible motion of the system with 
reflections. Of course this is not a rigorous argument, but it explains the somewhat formal approach of 
Section 1. 

3. The assertion implies a close relationship between the steady regimes (SRs) of the 
stochastic system without non-retaining constraints and the SRs of the ori~nal system. The 
existence of SR in the system without constraints implies immediately that an SR exists in the 
system with non-retaining constraints (this is clear because a reflecting wall enhances the 
recurrent properties of the process), the one-dimensional densities of the systems being equal 
apart from multiplicative constant. In general, the converse is not true because the one- 
d~e~ion~ density of an SR of a system with reflections may fail to satisfy the notation 
condition over the phase space of the system without constraints. In Example 1 there is an SR 
(i.e. the exact solution of (2.3) with ijf, /at = 0) with density 
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However, no SR exists in the system without a reflecting screen. In Example 2 (h = l), if both 
walls are removed, then an SR exists with density 

f81(v,~)=cex~ - [ +L9)] 
The SR remains after imposing two unilateral constraints. In this case the expression for J;, 
remains unchanged, except for the constant c. 

Taking into account the connection between the existence of an SR in the original system 
and the system without constraints, to find the SRs in a stochastic mechanical system with 
absolutely elastic reflection one can use the methods for finding SRs developed for stochastic 
systems without non-retaining constraints (see. for example, 1111). 

As an example, consider the motion of a massive strictly convex solid in a random medium above an 

absolutely smooth horizontal plane X, y , with : representing the vertical direction (the collisions are 
perfectly elastic). The motion occurs in a uniform gravitational field with acceleration g. Furthermore, r 

denotes the position vector of the centre of mass relative to the system of coordinates at rest. We assume 
that the random medium acts upon the body with a deterministic dissipative force and torque (which are 
linear functions of the velocities) as well as a random force and random torque. When there is no non.. 

retaining constraint the equation of motion 

r-=g-ci+V 

of the centre of mass is independent of the equation of motion 

Iw~+oxlw~=-D6l+v, y.+wxy=o 

of the body relative to the centre of mass. Here E is the specific coefficient of friction, I is the inertia 
tensor, D’ is a positive definite dissipation matrix, and V’ and V are the independent vectors of normally 

distributed “white noise” with constant non-degenerate intensity matrices u’ and v. It is assumed for 
simplicity that v’ = v,E (E is the unit matrix and v, = const). 

It follows from the results obtained in [12] and the above assertion that if D is represented in the form 

D = v(7i;E +1,1) 

where h, and h, are real numbers such that the matrix h,I + h,12 is positive definite, then there an SR 

exists, the one-dimensional density of which is given by 

f,,(W,y,r’,z)=cexp(-OTIu-‘DW -Er.‘/v, -2Egz/v,) 

where f., is normalized in the domain U = R’ x S” x R’ x [O, -). Thus 

4. The method involving the orthogonal expansion of the one-dimensional distribution 
density in a suitable Hilbert space [13] can be used for the approximate analysis of stochastic 
mechanical systems with a unilateral constraint. However, in this case the equations for the 
coefficients (quasimomenta) of the expansion of the one-dimensional density will differ from 
those in the case without a unilateral constraint in the system. This is so because [M&x)] is no 
longer equal to MG*t (M denotes the mathematical expectation and G* is the adjoint 
operator to G). 

We will use Examples 1 and 2 to illustrate this approach. 
First we will consider the problem of a pendulum between parallel walls. The region U =[-I, I]x R 

with coordinates cp and p is the phase space of the system. In the Hilbert space &(u, u) of functions on CJ 
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with measure dp =p,,(p)dcpdp, where &, z(U)-‘(Zrry)~““exp[-p’1(2y)] (in what follows y> 0 is a 

constant), we define an orthonormal basis as the system of all products {e,If,,,, e:Zf,,,] of the trigonometric 

functions 

l,en.e~ (n=1.2 ,... ). e,=&(-1)*&n (2n-l)w 
21 ’ 

f?; =~~-l)%s~ (4.1) 

and Hermite polynomials 

Ho(P)=& 4(p)= P 
X’“” 

The desired one-dimensional density f,(cp, p, I) can be represented as 

at any instant of time, the coefficients (the quasimomenta of the desired process [rp, p]r) being 

4 =~H,(P). %,i =MH,(p)e,W, b,,,,, =MH,,,(p)e;(cp) (4.3) 

Note that system (4.1) is chosen because, in general, f, has different values at the points cp=f and 
cp = -1. The traditional trigonometric system is therefore unsuitable here. 

Lemma 2. For any smooth function Qcp, p) 

(Mg =N(f;r)- Tplf(l,p,t)5(~~P)-f(-I~P.t)S(-~,P)ldp (4.4) 

provided that all the mathematical expectations and integrals in (4.4) exist. 

Proof. By definition 

Using the FPK equation for fi and the formula for integration by parts, we have 

i.e. we obtain the required equality (4.4). 

Using Lemma 4 and formulae (4.2) and (4.3), we obtain the following linear differential equations with 
constant coefficients for the coefficients d,, a,,, b,,,,, of (4.2) (summation is with respect to k from k = 1 
to -) 
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K,=a-#)+a-(-t)+a+(k)+a+(-t) 

& =B+(-k)+a-(-k)+a+(k)+fS-(k) 

a*(&)= 1*(2n-l)z+k 
[ 

1 

21 1 IT 

p*(r)= lf(2n+l)5+7 
[ J 

1 
V 

. r=g 

Considering only those m, n in (4.2) for which 0 G m, n C N (the orthogonal summation method for 
the series (4.2)) and setting the remaining c,, equal to zero, we obtain a system of linear differential 
equations of order N(2N+3). Solving this system (for example on a computer), we obtain an 

approximate expression for the distribution density and approximate values of the quasimomenta at any 

instant of time. 
The results of numerical computer experiments for N = 6 are presented in Fig. 2 (in which the one- 

dimensional density of the SR is shown) and Fig. 3 (in which the time dependence of Mp, Dp, Msincp, and 

Mcoscp is presented). 
Now let us consider Example 1. The half-plane U = [0, m)x R with coordinates q and p is the phase 

space of the system. In the Hilbert space Z&J, p) of functions on U with measure u such that 

cicI=p&?)lr~(PbwP. ih(d=exP(-qh P2 =(2eKexP[-P2 /(WI 

we define an orthonormal basis to be the system of all products of Laguerre polynomials 

Fig. 2. 

0 2 I 6 t 

Fig. 3. 
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h(q)=(n!)%Q d” --Q(*“c~) = ,t (-l)‘ci j-‘q’, Ci 
II! 

=- (n=O,l,...) 
j!(n-j)! 

and Hermite polynomials H,,,(p). 
The desired one-dimensional density fi(q, p , f) can be represented as 

It can be shown that Lemma 2 with q = 0 and q = 0 substituted, respectively, for -1 and 1 in (4.4) holds 

for any smooth function k(q, p). Hence, taking (4.5) into account, we can obtain the following equations 

for the coefficients of the expansion c_ 

Applying the triangular summation method to series (4.5), i.e. restricting oneself only to those c,, for 
which 0 4 m + n 6 N, and setting the others equal to zero, from (4.6) we obtain the precise expressions for 

the coefficients of the expansion of the stationary density (3.1) (the only non-zero coefficients are 
con =(1-y/k)“). Using the same summation method and solving Eq. (4.6), we can obtain approximate 

expressions for the non-stationary probability distribution density and approximate values for the quasi- 

momenta at any instant of time. 
Note that the application of the orthogonal expansion method to systems with unilateral constraints 

requires an additional justification because of the effect reflected in Lemma 2. 

Note that the orthogonal expansion method can be applied both to the system without non-retaining 

constraints (followed by normalization in the domain of possible motions of the system with reflections) 
and to the original system with collisions. In these cases the orthonormal bases will be different (and so 
will the phase spaces). For example, in the problem of a simple pendulum moving in a random medium 
with two constraints one can use an orthonormal basis, which is a combination of Fourier trigonometric 
functions and Hermite polynomials and seek f, :SxR+ R without regard to the constraints (as in [13]). 
Then one only needs to adjust d,, using a different normalization condition. Computational experiments 

have also been carried out for this approach, confirming the results presented in Figs 2 and 3. 
In conclusion, we note that the results can be easily carried over to the case when the vector of random 

forces in (1.1) can be represented in the form b(q,p, t)n(t), and m(t) is a random vector that satisfies the 
forming filter equation [8] 

II’ =a(=)+ b(W)V(f) 
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